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Objective

Recovering sparse conditional 
independence graph G from 
data
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Applications

Biology Finance



Convex Formulation

● Given M samples from a distribution: 
● Estimate the matrix ‘ϴ’ corresponding to the sparse graph

Objective function: L1 regularized log-determinant estimation

Covariance matrix

5𝛴 =
𝑋7𝑋
𝑀

Regularization
Parameter



Existing Optimization Algorithms

G-ISTA

Proximal 
gradient 
method



Existing Optimization Algorithms

G-ISTA

Proximal 
gradient 
method

Glasso

Block 
coordinate 

descent 
method

Updates each column (and the corresponding row) of the precision matrix 
iteratively by solving a sequence of lasso problems



Existing Optimization Algorithms

G-ISTA

Proximal 
gradient 
method

Glasso

Block 
coordinate 

descent 
method

ADMM

Alternating 
direction 

method of 
multipliers



Hard to Tune Hyperparameters

‘Grid search’ is 
tedious and 
non-trivial 

Outcomes 
highly sensitive 

to penalty 
parameters

Tuning 
hyperparameters for 
Traditional Methods

Errors of different 
parameter combinations



Mismatch in Objectives

Log-determinant 
estimator

Recovery 
Objective 
(NMSE)

mismatch!
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Limitations of Existing Optimization Algorithms

Pradeep Ravikumar, Martin J Wainwright, Garvesh Raskutti, Bin Yu, et al. High-dimensional covariance estimation by 
minimizing l1-penalized log-determinant divergence. Electronic Journal of Statistics, 5:935–980, 2011.

Consistency of 
estimator

Based on ‘carefully chosen conditions’ like
1. Lower bound on sample size
2. Sparsity of Ө
3. Degree of graph
4. Magnitude of covariance entries

Specific 
regularization 

parameter
1. Highly sensitive parameter
2. Depends on tail behavior of maximum 

deviation 

Limitations of the
convex formulation Room for 

Improvement!



Big Picture Question
● Given a collection of ground truth precision matrix Θ∗, and the corresponding 

empirical covariance 5Σ

● Learn an algorithm 𝑓 which directly produces an estimate of the precision 
matrix Θ? 
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Deep Learning Model Example

DeepGraph (DG)` architecture.The input is first standardized and then the sample 
covariance matrix is estimated. A neural network consisting of multiple dilated 

convolutions (Yu & Koltun, 2015) and a final 1 × 1 convolution layer is used to predict 
edges corresponding to non-zero entries in the precision matrix.

* DeepGraph-39 model from Fig.2 of “Learning to Discover Sparse Graphical Models” by Belilovsky et. al.



Challenges

#parameters 
scale dim^2

Interpretable

SPD 
constraint

Permutation 
Invariance

DNNs

CNNs

Autoencoders, 
VAEs, RNNs

Challenges in Designing Learning Models

Challenges

#parameters 
scale 𝐷×𝐷

Interpretable

SPD 
constraint

Permutation 
Invariance

DNNs

CNNs

Autoencoders, 
VAEs, RNNs

Traditional Approaches



GLAD: DL model based on Unrolled Algorithm
Alternating Minimization (AM) algorithm: Objective function

AM: Update Equations (Nice closed form updates!)

● Unroll to fixed 
#iterations ‘K’.

● Treat it as a 
deep model



GLAD: Training

Loss function: Frobenius norm with 
discounted cumulative reward Gradient Computation through matrix 

square root in the GLADcell:

For any SPD matrix X:

Solve Sylvester’s equation for d(X1/2):

Optimizer for training: ‘Adam’. 
Learning rate chosen between [0.01, 
0.1]  in conjunction with Multi-step 
LR scheduler.



Use Neural Networks for (⍴, λ) 
↕

(⍴NN, λNN)

# of layers 
= 2
Hidden unit 
size = 3

# of layers 
= 4
Hidden unit 
size = 3

Minimalist 
designing of Neural 

Networks

Non-Linearity:
Hidden layers = ‘tanh’
Final layer = ‘sigmoid’



GLAD 

GLAD

Using algorithm 
structure as 

inductive bias for 
designing 

unrolled DL 
architectures

GLADcell



GLAD

Minimalist 
Model

Interpretable

SPD 
constraint

Permutation 
Invariance

Desiderata for GLAD

GLAD: Graph recovery Learning Algorithm using Data-driven training 

GLAD

Minimalist 
Model

Interpretable

SPD 
constraint

Permutation 
Invariance



Experiments: Convergence

Fixed Sparsity level 
s=0.1

Mixed Sparsity level 
s 〜U(0.05, 0.15)

GLAD vs 
traditional 
methods

Train/finetuning 
using 10 random 
graphs

Test on 100 
random graphs



Experiments: Recovery probability

GLAD able to recover true 
edges with considerably 

fewer samples

PS is non-zero if all graph 
edges are recovered with 

correct signs

Sample complexity for model 
selection consistency



Experiments: Data Efficiency (cont...)

Methods M=15 M=35 M=100

BCD 0.578±0.006 0.639±0.007 0.704±0.006

CNN 0.664±0.008 0.738±0.006 0.759±0.006

CNN+P 0.672±0.008 0.740±0.007 0.771±0.006

GLAD 0.788±0.003 0.811±0.003 0.878±0.003

AUC` on 100 test graphs, Gaussian random graph sparsity=0.05 
and edge values sampled from ~U(-1, 1).

* DeepGraph-39 model from “Learning to Discover Sparse Graphical Models” by Belilovsky et. al.
` Table 1. of Belilovsky et. al.

GLAD vs CNN*

Training graphs
100 vs 100,000

# of parameters
<25 vs >>>25

Runtime             
< 30 mins vs 
several hours



Gene Regulation Data: SynTReN details

Synthetic gene expression 
data generator creating 

biologically plausible networks
Models biological & 
correlation noises 

The topological characteristics 
of generated networks closely 

resemble transcriptional 
networks

Contains instances of Ecoli 
bacteria and other true 

interaction networks

SynTReN



Gene Regulation Data: Ecoli Network Predictions

Recovered graph structures for a sub-network of the E. coli consisting of 43 genes 
and 30 interactions with increasing samples. All noises sampled ~U(0.01, 0.1) 

Increasing the samples reduces the fdr by discovering more true edges.

GLAD trained on 
Erdos-Renyi

graphs of 
dimension=25. 

# of train/valid 
graphs were 

20/20.

M samples were 
generated per 

graph



Theoretical Analysis: Assumptions

Ensures that sample sizes are large 
enough for an accurate estimation of the 

covariance matrix

Restricts the interaction between edge and 
non-edge terms in the precision matrix



Consistency Analysis
Recalling AM Update Equations

An adaptive sequence of 
penalty parameters should 

achieve a better error bound

Hard to choose these 
parameters manually

Summary
Optimal parameter values 

depends on the tail behavior and 
the prediction error



Conclusion

Unrolled DL architecture, 
GLAD, for sparse graph 

recovery

Empirical evidence that 
learning can improve 

graph recovery

Highlighting the potential of 
using algorithms as 
inductive bias for DL 

architectures

Empirically, GLAD is able to 
reduce sample complexity



Thank you!


